Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension.

نویسندگان

  • Mattias Carlström
  • A Erik G Persson
  • Erik Larsson
  • Michael Hezel
  • Peter G Scheffer
  • Tom Teerlink
  • Eddie Weitzberg
  • Jon O Lundberg
چکیده

AIMS Reduced bioavailability of endogenous nitric oxide (NO) is a central pathophysiological event in hypertension and other cardiovascular diseases. Recently, it was demonstrated that inorganic nitrate from dietary sources is converted in vivo to form nitrite, NO, and other bioactive nitrogen oxides. We tested the hypothesis that dietary inorganic nitrate supplementation may have therapeutic effects in a model of renal and cardiovascular disease. METHODS AND RESULTS Sprague-Dawley rats subjected to unilateral nephrectomy and chronic high-salt diet from 3 weeks of age developed hypertension, cardiac hypertrophy and fibrosis, proteinuria, and histological as well as biochemical signs of renal damage and oxidative stress. Simultaneous nitrate treatment (0.1 or 1 mmol nitrate kg⁻¹ day⁻¹), with the lower dose resembling the nitrate content of a diet rich in vegetables, attenuated hypertension dose-dependently with no signs of tolerance. Nitrate treatment almost completely prevented proteinuria and histological signs of renal injury, and the cardiac hypertrophy and fibrosis were attenuated. Mechanistically, dietary nitrate restored the tissue levels of bioactive nitrogen oxides and reduced the levels of oxidative stress markers in plasma (malondialdehyde) and urine (Class VI F2-isoprostanes and 8-hydroxy-2-deoxyguanosine). In addition, the increased circulating and urinary levels of dimethylarginines (ADMA and SDMA) in the hypertensive rats were normalized by nitrate supplementation. CONCLUSION Dietary inorganic nitrate is strongly protective in this model of renal and cardiovascular disease. Future studies will reveal if nitrate contributes to the well-known cardioprotective effects of a diet rich in vegetables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

NADPH oxidase in the renal microvasculature is a primary target for blood pressure-lowering effects by inorganic nitrate and nitrite.

Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate-nitrite-NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) b...

متن کامل

Intrarenal dopamine attenuates deoxycorticosterone acetate/high salt-induced blood pressure elevation in part through activation of a medullary cyclooxygenase 2 pathway.

Locally produced dopamine in the renal proximal tubule inhibits salt and fluid reabsorption, and a dysfunctional intrarenal dopaminergic system has been reported in essential hypertension and experimental hypertension models. Using catechol-O-methyl-transferase knockout (COMT(-/-)) mice, which have increased renal dopamine because of deletion of the major renal dopamine-metabolizing enzyme, we ...

متن کامل

Renal sodium handling and sodium sensitivity

The pathophysiology of hypertension, which affects over 1 billion individuals worldwide, involves the integration of the actions of multiple organ systems, including the kidney. The kidney, which governs sodium excretion via several mechanisms including pressure natriuresis and the actions of renal sodium transporters, is central to long term blood pressure regulation and the salt sensitivity o...

متن کامل

Potassium supplementation reduces cardiac and renal hypertrophy independent of blood pressure in DOCA/salt mice.

We have demonstrated previously that deoxycorticosterone acetate (DOCA)/salt induces cardiac hypertrophy and left ventricular dysfunction independent of blood pressure (BP) in 1-renin gene mice. Because these mice also develop hypokalemia and metabolic alkalosis caused by mineralocorticoid excess, we investigated whether correcting hypokalemia by dietary potassium supplementation would prevent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2011